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Abstract

This paper presents new gasoline price elasticity estimates for California. We

use unique characteristics of the California gasoline market and a new set of

proposed instruments that are strong and plausibly exogenous. As a first step,

we take advantage of California’s unique gasoline market, which is partially

isolated from the rest of the U.S. due to environmental regulations. We control

for persistent demand shocks and estimate a lower bound for the elasticity of

demand of -0.23. In the second step, we use a new set of instruments to control

for simultaneity. We use detailed information on refinery outages to capture

short-run supply shocks. Our estimate of long-run demand elasticity is -0.57.
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1 Introduction

The long-term price elasticity of demand for gasoline is an important parameter used

in economic research, policy design, and business decisions.1 Several previous studies

estimate the average elasticity by aggregating data across many different regions.

This strategy was largely due to the fact that the data was previously somewhat

limited.

A recent contribution Kilian and Zhou (2024) is one of the first papers to use more

detailed state-level data to analyze heterogeneity in markets. They find that crude oil

pass-through into gasoline prices varies systematically across regions. Their findings

imply that there may be important heterogeneity between states. Liu (2014) also finds

evidence of heterogeneity in gasoline demand price elasticity. As the largest market

by revenue in the US, California has been at the forefront of regulating gasoline and

energy markets to encourage the transition to a lower greenhouse gas (GHG) emission

economy (e.g. cap and trade system, low carbon fuel standard). Its fuel market is

also largely segmented from the rest of the country. As a result of various policies

and generally higher prices, California consumers may react differently to changes in

gasoline prices.

In this paper, we focus on a recent sample period for California and estimate a

California-specific price elasticity. Estimating the price elasticity using observational

data has proven to be challenging. For effective estimation, researchers must con-

trol for demand shocks and require supply-side price variation, achieved through an

instrumental variable (IV) approach. Our focus on the California gasoline market

allows us to take advantage of its specific features, which in turn allows us to identify

the price elasticity of demand.

The California gasoline market is unique in the US, given its large size and strict

environmental regulations. To achieve the environmental standards set by the Cal-
1For example, Holland et al. (2009) estimate the social costs of implementing the Low Carbon

Fuel Standard (LCFS) and simulate different scenarios based on different supply and demand price
elasticities. Parry et al. (2022) weigh the benefits and downsides of different carbon pricing policies.
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ifornia Air Resources Board (CARB), refiners in California must build special and

costly units that produce specific blending components that are not required in the

rest of the country. As a result, CARB-grade gasoline is only consumed in California

and is almost exclusively produced there. Consequently, California is close to a sep-

arated gasoline market. Therefore, reductions in refining capacity cannot easily be

compensated for by importing gasoline and can greatly impact prices. These market

features allow us to control for demand shocks first and then use supply shocks that

have strong associations with retail prices.

We start by using detailed controls for demand shocks. To the extent that demand

is persistent, we can (at least partially) control for demand shocks by including lagged

sales. The rich data in California allow us to also control for inventories, imports,

and capacity utilization. For example, if a persistent demand shock hits, refiners

will adjust their inventories and refinery utilization in anticipation of this prolonged

shock. Including such lagged variables as controls, we estimate demand elasticities

between -0.24 and -0.20, slightly lower in magnitude but consistent with the findings

in Coglianese et al. (2017). However, these estimates cannot perfectly control for

all demand shocks. There is still some attenuation bias from supply and demand

simultaneity. These estimates can therefore be seen as a lower bound on the absolute

size of the demand elasticity.

In the second step, we introduce refinery outages as instruments for supply shocks

to address supply and demand simultaneity. During the sample period, California has

seen large refinery outages. For example, due to an explosion at the Torrance refinery

in 2015, seven percent of the refining capacity was unavailable for more than a year.

In addition, there have been many other refinery outages that were smaller and more

frequent. These outages are the result of power outages, operational accidents, or the

need to replace parts. Importantly, they are plausibly exogenous and can therefore

be used as instruments for supply shocks. Specifically, the instruments are relevant

because they directly impact supply, consumers do not anticipate outages, and they

are conditionally uncorrelated with gasoline demand.
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However, not all outages are the same. Outages rarely happen at a refinery-wide

level. Instead, there are specific units within the refinery that stop working. Each

unit has a different production capacity, and their outputs are important inputs to

other refining processes. Losing a small refining unit that creates a critical component

can have an outsized effect on the whole refining process. We use a detailed data set

with information on which refining units stopped working, the dates when the outage

occurred, and how much capacity was lost.

Based on these instruments, we can calculate two sets of price elasticity estimates

for the California gasoline retail market. We estimate the one-month price elasticity

of demand to be -0.2 and the long-term elasticity to be -0.57.

Our California-specific estimate is larger in magnitude than some other recent

estimates. Kilian and Zhou (2024) find that elasticities can vary substantially across

subsamples, reaching very similar magnitudes as compared to our estimate. The

higher elasticity in California may be driven by a greater awareness of energy mar-

kets and environmental effects, as well as a higher awareness of price changes. Indeed,

Kilian and Zhou (2024) find that elasticities are lower if the income is higher. Cal-

ifornia has above median income, suggesting that our higher elasticity estimate is

reflecting unique California-specific effects.

Our paper contributes to the existing literature on demand elasticity estimation.

Many previous papers used instruments that either take information from the crude

oil market or from changes in taxes. As we learn more about demand estimation, a

growing body of literature has found significant limitations in the instruments used.

These studies have identified three main challenges: the instruments’ relevance, the

instruments’ conditional correlation with consumer expectations, and the conditional

correlation between the instruments and aggregate economic activity (Houthakker

et al. (1974), Ramsey et al. (1975), Li et al. (2014), Coglianese et al. (2017), Kilian

and Zhou (2024)). In Section 2, we discuss these challenges in further detail. Section

3 discusses how local California outages are robust to these challenges. Section 4

presents our results from the OLS and IV estimates. Section 5 adds an additional
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discussion and concludes.

2 Previous gasoline elasticity estimation approaches

Gasoline consumption touches several aspects of our everyday lives. Therefore, it

is not surprising that the price elasticity of demand is used to inform public policy

decisions, business decisions, and economic research as a whole (Hastings (2004), Yeh

and Sperling (2010), Carter et al. (2011), Knittel and Tanaka (2021)). However, there

are challenges when identifying the parameter using observational data.

The main challenge for parameter identification is the simultaneity of supply and

demand when using observational data from market outcomes. To address the pa-

rameter identification challenge, two components are necessary: exogenous variation

that is uncorrelated with unobserved demand components but strongly correlated

with gasoline prices (Gandhi and Nevo (2021)); second, a set of controls for demand

shifters (Berry and Compiani (2021)). The first set of components has not always

been easy to find.

There are three broad areas of focus: (i) relevance of the instruments; (ii) condi-

tional independence of the instrument from consumer expectations; (iii) conditional

independence of the instrument from aggregate economic activity. In the following

subsections, we describe the instruments that have previously successfully addressed

these difficulties using various data sets from specific sample periods and geographic

locations. Before introducing our California-specific instruments, we provide a short

overview.

Table 1 provides an overview of selected studies that have estimated the price

elasticity of demand by addressing simultaneity bias; most of them use information

from the crude oil market or from tax changes.
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Table 1: Selected works on IV estimation of the price elasticity of
demand for gasoline in the US

Authors Instrument Estimated
price
elasticity

Estimate St. Errors

Houthakker et al. (1974) Lagged prices
of gasoline

Private
demand

-0.24 Not reported

Ramsey et al. (1975) Relative prices
of other
distillates

Private
demand

-0.65 0.36

Hughes et al. (2008) Weather-related
oil prod.
disruptions

Retail
demand

-0.03 0.01

Li et al. (2014) Gas taxes &
oil prices

Retail and tax
elast. of dem.

-0.07 0.02

Coglianese et al. (2017) Gas taxes Retail
demand

-0.37 0.23

Kilian and Zhou (2024) Gas taxes Retail
demand

-0.32 0.067

2.1 Instruments based on the crude oil market

One of the first studies to tackle this problem was Houthakker et al. (1974) who

use lagged price as an instrument. Another approach is to instrument for price using

information from the crude oil market (Ramsey et al. (1975)). Crude oil is the primary

input into gasoline production (Gary et al. (2007c)). Therefore, crude oil prices

strongly correlate with gasoline prices through a cost channel. However, crude oil

prices are not uncorrelated to gasoline demand. After distilling crude oil, close to 50%

of its output is gasoline blending components (Energy Information Administration

(2022)). This makes crude oil and gasoline prices interconnected through consumers’

income and their expectations of future economic activity.

Another set of instruments from the crude oil market is disruptions to crude oil

production. Hughes et al. (2008) find that these are not strong predictors of gasoline

prices. This may be for two reasons: most of the US crude oil production disrup-

tions that the authors consider are related to weather events in the U.S. Gulf Coast
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(USGC). The general occurrence of these events follows a seasonal pattern and each

specific weather event can be forecasted with more than two weeks of anticipation.

The seasonal pattern and the ability to forecast weather events allow refiners to adjust

their purchase levels to compensate for disruptions to their supply of inputs. Supply

disruptions may therefore have a weak first-stage regression due to anticipatory be-

havior from refiners. In contrast, our approach of narrowing the geographic area to

California allows us to improve on this approach. As we will discuss in more detail,

our detailed data on specific types of outages also allow us to strengthen the first

stage.

2.2 Other appaoches to address endogeneity

Next, we provide a brief overview of other approaches. Using a panel data approach,

one strategy is to use tax changes as an instrument for price changes. This strategy

has been successfully used and refined in several studies. Davis and Kilian (2011)

show that state tax changes may have a noticeable effect on prices at the state level.

Li et al. (2014) show that the salience of the tax implementation may generate

endogeneity. For example, two tax changes of the same magnitude publicized dif-

ferently may produce different consumer reactions through the expectation channel.

The authors therefore control for news coverage in anticipation of a tax change.

Finally, Coglianese et al. (2017) account for the anticipatory behavior of consumers

to a tax that is being implemented. They include leads and lags of retail prices to

control for anticipatory and forward-looking behavior.

Using micro-level data, it can sometimes be possible to estimate demand elasticity

precisely without the use of an IV approach. Levin et al. (2017) use disaggregated

daily panel data for 243 US cities from 2006 to 2009 and include city and day-of-

sample fixed effects to control for supply and demand simultaneity.

Our focus is on specifically studying the California market. This market is relevant

because it is largely segmented and the largest state in the US.
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3 Using refinery outages as exogenous price shocks

To address endogeneity, we follow an approach similar to Hughes et al. (2008), who

use supply disruptions in Venezuela, Iraq, and the US. Focusing on California, we

propose refinery outages as a new set of instruments to estimate the price elasticity of

demand. This set of instruments solves the three main documented issues mentioned

in Section 2. Due to the institutional arrangement of gasoline production, a refinery

outage reduces available installed capacity and increases costs for producers.

Gasoline production follows a multistep process. Refineries produce gasoline

blending components and these blending components are mixed to achieve specific

performance properties (Gary et al. (2007c)). The blend is transported to a city

terminal, mostly by pipelines, and then mixed with ethanol to produce finished gaso-

line. The finished gasoline is then distributed within the city to the gasoline stations

(Borenstein et al. (1992)).

Different markets need different performance properties of their finished gaso-

line. Refineries achieve these properties and optimize their configuration by choos-

ing, amongst other things, which refinery units to install and how to connect them

together. In this process, the output of one refining unit is used as input to another

refining unit.

This combination of products is meant to maximize the refiner’s profits, condi-

tional on achieving performance requirements. This configuration results in refining

units connected in a complex multistage process (also see additional discussion in

Section 3.3.).

Heat, pressure, catalysts, and other chemicals are used throughout the refining

stages. Because of the nature of these processes, every so often, refineries need to

stop operating one of the refining units for repair. Sometimes, a specific stage of the

refining process suffers from an accident or a malfunction. These incidents lead to

unplanned stops in the operation of a refining unit. We refer to the loss in refining

capacity in a specific refining unit as an outage.
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Several circumstances lead to outages. Examples include an unplanned power

outage; an unplanned flaring event;2 a malfunction in the refining unit caused by

a leak, a crack, or loss in pressure or a fire; unexpected high winds; unexpected

malfunction of the crude pipeline that supplies the refinery; replacing an old unit

with a newer one; or replacing a part due to wear and tear.

3.1 Data and summary statistics

We use a detailed data set from Bloomberg, where we observe the output of each

individual refinery unit within a refinery. We need this granularity in the data in

order to ensure a strong first stage for the IV estimation and also more precise over-

all estimates. For explanatory purposes, we group the relevant refinery units into

middle-stage units that produce a sizeable share of the finished output and sulfur-

reducing units that produce specific distillates. The latter produce smaller amounts

of distillates but are essential to achieve the regulatory requirement; therefore, a small

outage has an outsized effect. We discuss the refining process and how it relates to

our instrument in more detail in Section 3.3.

Fuel sales data are from the California Department of Tax and Fee Administration;

we source retail prices, inventories, imports, capacity utilization, and WTI prices

from the US Energy Information Administration. The outage data set comes from

Bloomberg; these data are available starting in 2011. Our sample period therefore

runs from January 2011 until March 2023.

Table 2 reports summary statistics of the variables used in the estimation. The

upper part of the table reports statistics for control variables, while the bottom part

of the table shows statistics for outages, specifically the change in capacity due to

an outage. We note that sales are quite stable, suggesting that the size of shocks

to demand is not large when measured as a percentage of sales. Importantly, the
2A flaring event happens when excess hydrocarbons are burned rather than released straight

into the atmosphere. Plants usually inform local authorities about planned flaring. But sometimes
pressure builds up to dangerous levels, resulting in an unplanned flaring event. For more information,
see Gary et al. (2007b).
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standard deviations of capacity lost due to outages are similar in magnitude to the

standard deviation of sales, suggesting a potentially large impact of outages on supply.

We also note that the mean of inventories is quite large so that sales can be smoothed.

This link means that inventories may be a relevant control variable when we estimate

elasticities. As we discuss more later, we also see that capacity utilization has an

average of 84.5% and a maximum of 97.7% implying potentially large impacts of

outages.

Figure 1 plots the dates and sizes of various types of outages over the sample

period. We note that with the exception of 2020 (probably related to the effects

of the pandemic), outages occur frequently and throughout the sample. There are

no visible trends in outages and there also do not appear to be large and prolonged

differences in variability across different subsamples.

Table 2: Summary statistics

Variable N Mean SD Min Max
Date (monthly) 139 . . Jan 2011 Aug 2022
Sales (MMgals/month) 139 1,220.7 98.4 713.6 1,514.2
Retail price (USD/gal) 139 3.6 0.7 2.4 6.2
Inventories (MMgals) 139 753.9 68.7 617.4 952.6
Imports (MMgals/month) 139 946.8 209.0 419.4 1,641.4
Capacity util. (%) 139 84.5 6.7 60.5 97.7
WTI (USD/barrel) 139 70.0 23.7 16.5 114.8
Outages :
:: Alkylation unit (MMgals/month) 139 21.1 41.6 0.0 233.8
:: Coker unit (MMgals/month) 139 23.2 33.1 0.0 139.8
:: Hydrocracking unit (MMgals/month) 139 29.4 41.6 0.0 233.2
:: FCC unit (MMgals/month) 139 57.2 73.8 0.0 316.3
Notes: MM denotes millions

3.2 Characteristics of outages

In Section 2 we summarized three documented concerns about instruments for the

price of gasoline. We will now relate those concerns to gasoline outages.

The first concern is the relevance of the instruments. Outages in specific refining

units result in increased costs for the refiner. As one of the components of the opti-

mized blend is missing, refiners either: source the missing component from an outside
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Figure 1: Refining capacity lost for outages in different refining units

supplier, which is costly (American Petroleum Institute (2013)); reduce total output

while maintaining the optimal blend, which increases inventory costs due to unused

components (Energy Information Administration (2007)); or produce a suboptimal

blend subject to achieving performance requirements (Valentine and Josefson (2017)).

In each case, there is an increase in operational costs and the possibility of a reduced

output, which will impact market prices.

A second concern is the conditional independence of the instrument from consumer

expectations. For example, if consumers expect higher prices in the future, they

can buy gasoline before a price increase happens. However, due to the unexpected

nature of accidents, consumers cannot engage in anticipatory buying before a specific

operational problem occurs when dealing with refining accidents.

Third, the salience of an event affects consumer expectations of the magnitude

of the impact. Regarding refinery outages, news agencies cannot cover an accident

in anticipation of it happening. Therefore, the level of coverage cannot affect ex-

pectations before the incident. However, once the unplanned outage occurs, it may

be covered by the news. Most unplanned outages in the U.S. are reported to the

Occupational Safety and Health Administration (OSHA). Large, unplanned outages
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are reported in specialized news outlets. To account for possible salience effects, we

will include lagged retail sales.

Figure 2: Distribution of the duration of outages

Another possibility is that consumers may expect the duration of the outage to be

long-lived, and they react differently from a regular price change. However, the vast

majority of outages are resolved in a short period of time; 83% of them are solved

in less than a month. Therefore, outages are unlikely to elicit changes in long-term

consumer behavior, such as buying a more fuel-efficient vehicle, moving closer to their

job to reduce commute distances, or choosing alternative modes of transportation.

Figure 2 provides additional detail on the duration of outages.

Another concern is the conditional independence of the instrument from aggregate

economic activity. It is possible that accidents in a refinery are more likely to occur

when the units are running at full capacity. This would violate the assumption

that accidents happen randomly. To account for the possible systematic variation in

accidents, we control for the percentage of operating capacity at which the refineries

operate.

California’s gasoline market faces a set of regulatory and infrastructure constraints

that make it a partially isolated market from the rest of the 47 contiguous states and

the District of Columbia. This unique setting causes the proposed instrument to have
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a strong first-stage regression because it is relatively difficult to substitute for the loss

of local production capacity.

Due to environmental regulations, Californians consume the cleanest gasoline in

the US. However, within the US, only California refineries produce this blend for the

majority of our sample period (Pyziur (2016)). Therefore, when there is an outage and

refining capacity is lost, wholesalers cannot substitute local production with refined

products produced elsewhere in the U.S.

Figure 3: Utilization of refining capacity

An alternative to sourcing refined products from outside the state is to substitute

with products made within the state. However, refineries in California have been

operating increasingly close to their installed capacity, making it harder to increase

regional production in response to a local outage. Figure 3 shows the throughput

of refineries in PADD 5 as a percentage of the installed available capacity.3 PADD
3A Petroleum Administration for Defense Districts (PADD) is a geographic division of crude
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5, encompasses California and other states along the West of the U.S., of which

California is by far the largest.

A second alternative to substitute for the loss of local production capacity is to

import refined products into California from outside the US. There are two other

countries that produce the refined products needed to achieve the required blend for

California: Singapore and South Korea. According to California Energy Commission

(2020a), the minimum number of days required for a vessel to reach California and

be fully unloaded is 19 and 13 days, respectively. However, weather conditions across

the Pacific Ocean and local logistics constraints at California’s ports can extend this

timeframe. The lag between an outage and when imported products may arrive

creates a temporary contraction in supply.

One of the possible local logistics constraints when importing distillates is schedul-

ing their transportation once the vessel is unloaded. Schremp (2015) explains that

only two sets of pipelines transport products in California. The first one starts in San

Francisco and finishes in Reno passing through several refineries along the way. The

second set of pipelines starts in Los Angeles and forks to Las Vegas and Phoenix. The

limited number of pipelines leads to a strict scheduling system in which users need

to buy space and time in the pipeline in advance. Then, it is likely that an importer

would have to buy the already reserved pipeline capacity to move imported products

(California Energy Commission (2020a)). This would increase transportation costs,

which may ultimately be passed on to the retail price resulting in a strong first-stage

regression.

3.3 Different types of outages

Gasoline production is a multistage process. Refinery units are involved in different

stages in this process, each with a different installed capacity. Therefore, an outage

of 10 million gallons per month will have a very different impact depending on the

and fuels markets established during World War 2 to ration gasoline consumption. Today, market
participants use the division to analyze regional trends (Energy Information Administration (2012)).
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stage of the process in which it occurs. To improve the power of the instruments, we

differentiate by the source of the outage at the refinery unit level.

Not all outages are the same; simply aggregating capacity loss would result in

noisier estimates. For example, the crude distilling unit (CDU) is usually the largest

refining unit within a refinery, and all refineries have one. This unit is the first one to

receive the crude oil at the refinery; it then applies heat and produces the first batch

of distillates. Loss of 10 million gallons per month will not have a big impact since

its output would not be a limiting factor in producing California-compliant gasoline.4

In contrast, the alkylation unit has a smaller capacity as it is used mostly at the end

of the refining process and produces specific distillates that make the refining blend

California-compliant. The alkylation unit is expensive to build and install; only select

refiners have one. Losing 10 million gallons per month would create a large disruption

in the market. Appendix Section A discusses the differences in refniery units in more

detail.

3.4 Statistical Diagnostics for IV

We are now ready to start our estimation. The first step is to estimate the first stage,

where we regress the log of the monthly retail gasoline price on various measures of

outages and other explanatory variables. We also control for seasonal monthly fixed

effects. A necessary condition for our estimation to be valid is a choice of instruments

that do not suffer from the weak-instrument problem. We choose three different

specifications, including different sets of control variables corresponding to our main

results, which we report in the next section.

Table 3 reports the results. We find that the instruments are strong; the conven-

tional instrument threshold for the F-statistic is 10 and this is cleared in all three

specifications. As expected, we find that the coefficients on outages are positive and

in most cases statistically significant.5

4The installed refining capacity in California is approximately 2.1 billion gallons per month
5However, we note that the outages of the hydrotreating unit have a significant and, at first
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One of the advantages of using more detailed data on outages is our ability to

account for different effects of the various outage types. As discussed, the volume

and unit cost of production across components used in the blending process vary.

This approach therefore results in stronger overall instruments.

Table 3: First-stage estimation results.
First stage regression

Dep. Variable: log Retail Prices Specification 1 Specification 2 Specification 3
(1) (2) (3)

A) Coefficient estimates
Alkylation unit outage 0.473 0.576∗ 0.458
:: s.e. (0.313) (0.324) (0.297)
Hydrotreating unit outage -0.626∗∗∗ -0.606∗∗ -0.576∗∗∗

:: s.e. (0.121) (0.139) (0.112)
FCC unit outage 0.625∗∗ 0.585∗∗∗ 0.553∗∗

:: s.e. (0.217) (0.221) (0.200)
Hydrocracking unit outage 0.702∗ 0.668 0.617
:: s.e. (0.421) (0.432) (0.431)
Coker unit outage 1.461∗∗ 1.281∗∗∗ 1.305∗∗

:: s.e. (0.469) (0.482) (0.471)
log Retail sales, lagged x x x
log WTI, lagged x x x
log Inventories, lagged x x
log Imports, lagged x x
log Capacity util., lagged x
Constant 7.821∗∗∗ 10.321∗∗∗ 15.603***
:: s.e. (2.105) (3.242) (3.838)
Seasonal Month fixed effects Yes Yes Yes
B) Model stats.
R-squared 0.790 0.804 0.811
F stat. 18.71 20.55 26.80
Newey-West standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Outage units are in billion barrels per month to improve legibility.

4 Model and results

Following Houthakker et al. (1974); Paul et al. (2009); Taylor and Houthakker (2009)

we use a traditional dynamic log-log specification that relates the quantities consumed

to the prices observed on the market. We use equation (1) to estimate the parameters

glance, counterintuitive negative coefficient. A possible explanation is that some maintenance out-
ages may have occurred during the months of the year with low demand.
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of interest: the contemporaneous price elasticity of demand, β and the long-run

elasticity of demand implied by the partial adjustment model.

We use additional lagged covariates to control for demand shocks. In different

specifications, we control for aggregate and speculative demand shocks. We include

the level of inventories, the level of imports, the refinery utilization rate, and the

price of crude oil.6 To control for dynamic adjustment, we estimate different model

specifications given by lagged covariates in the following model,

qt = β0 +
11∑

s=1
ms

t +
L∑

ℓ=1

(
βℓpt−ℓ+1 +ρℓqt−ℓ +λℓwtit−ℓ +γℓinvt−ℓ +δℓimpt−ℓ +θℓutilt−ℓ

)
+εt

(1)

where β, γ, δ, ρ, λ, θ are parameters, and ms
t are monthly seasonal fixed effects. The

variable qt is the log of the level of gallons of gasoline sold in month t in millions.

The variable pt is the log of the monthly retail price of regular gasoline; invt is the

log of the level of blending components in inventories; impt is the log of imports into

California of motor gas blending components; wtit is the log spot price of a barrel

of West Texas Intermediate crude oil (WTI). The model in equation (1) includes the

lagged dependent variable qt−ℓ to control for partial adjustments, and the monthly

fixed effects ms
t to account for demand seasonality. εt is a shock of unobserved time-

varying factors with mean zero. We use the Bayesian information criterion (BIC) to

choose specifications with L = 1.

An unexpected shock to demand may take time to propagate. In theory, there

are two reasons why there can be partial adjustments. It is possible that there

may be autocorrelation in the errors; alternatively, it is possible that the shock is

i.i.d. but there is partial adjustment in the quantity, e.g. due to frictions or for

institutional reasons. From an econometric perspective, these two are observationally

equivalent. Our estimation approach can be used in either case. We also account for

any remaining unmodeled autocorrelation using Newey-West standard errors.
6As has been emphasized by Kilian (2009),Kilian and Zhou (2024) The raw WTI price is likely

correlated with aggregate demand shocks.
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Having estimated the elasticity, we can then calculate the long-term price elasticity

of demand, i.e. the response in quantity to a permanent increase in price, assuming

that all other variables remain fixed. The response of the quantity after a sufficient

amount of time has passed – the long-run elasticity – is then given by β⋆ ≡ β1/(1−ρ1).

The model parameter estimates described in equation (1) are presented in Table

4. There are three model specifications, each with different lagged control variables.

The estimates of each model specification are presented side by side, comparing two

estimation techniques, ordinary least squares (OLS) and instrumental variables (IV).

We first present OLS estimates with Newey and West (1987) standard errors; we

label these columns as OLS. However, this estimation procedure does not address

the simultaneity of supply and demand. Therefore, the OLS estimates provide a

lower bound for the elasticity estimates. The second estimation technique uses an

instrumental variable estimation procedure to control for simultaneity. We label

these columns as IV.

Table 4: Elasticity estimates under various specifications
Dep. Var.: log Retail Sales Specification 1 Specification 2 Specification 3

OLS IV OLS IV OLS IV
(1) (2) (3) (4) (5) (6)

A) Long term elasticity (β∗) -0.204∗ -0.613∗∗ -0.235∗∗ -0.713∗∗ -0.230∗∗ -0.569∗

:: s.e. (0.118) (0.299) (0.118) (0.325) (0.112) (0.300)
B) Coefficient estimates
log Retail price (β1) -0.041 -0.160∗ -0.044 -0.199 -0.047 -0.198∗

:: s.e. (0.029) (0.095) (0.027) (0.122) (0.040) (0.106)
log Retail sales, lagged (ρ1) 0.797∗∗∗ 0.737∗∗∗ 0.809∗∗∗ 0.720∗∗∗ 0.794∗∗ 0.651∗∗∗

:: s.e. (0.084) (0.070) (0.078) (0.093) (0.172) (0.177)
log WTI, lagged x x x x x x
log Inventories, lagged x x x x
log Imports, lagged x x x x
log Capacity util., lagged x x
Constant (β0) 4.182∗∗ 5.376∗∗∗ 4.790∗∗ 6.901∗∗∗ 5.103∗ 8.296∗∗

:: s.e. (1.817) (1.460) (1.602) (2.345) (3.011) (2.330)
Seasonal month fixed effects Yes Yes Yes Yes Yes Yes
Observations 138 138 138 138 138 138
R-squared 0.717 0.700 0.723 0.696 0.723 0.699
Bayesian Information Criteria -373.6 -362.0 -358.4
Note: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Note: Newey-West standard errors in parenthesis.

Table 4 Panel B reports estimates of the model parameters. The price coefficients
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in all specifications are negative but not statistically significant in the case of OLS.

The corresponding IV estimates are approximately four times as large and become

significant at the 10% level for specifications 1 and 3. The somewhat low level of

statistical significance is most likely driven by the relatively small sample size. The

reason for this is that the data on outages start only in 2011.7

The fact that the OLS estimates are much smaller in magnitude compared to

their IV counterparts is consistent with the well-documented case that estimates of

demand elasticity that control poorly for simultaneity tend to be biased towards zero

(see Davis and Kilian (2011), Coglianese et al. (2017), and Kilian and Zhou (2024)

for further details). The change in magnitude in the elasticity estimates validates the

assumption that the instruments control for simultaneity bias.

Panel A reports long-run elasticities (see definition above). We find that all IV

estimates for the long-term price elasticity of demand are statistically significant at

the 5% or 10% level. Our preferred specification is #3 – it is likely that the additional

controls in that specification are effective at reducing potential bias in the estimate.

We note in particular that, when additional controls are added relative to specification

#2, the point estimate drops quite a bit. Another reason for this preference is that

specification #2 does not have a statistically significant short-term (one month) price

elasticity estimate. Finally, the long-term elasticity has a slightly lower standard

error.

5 Discussion and conclusion

In this paper, we propose refinery outages as a new set of instruments to estimate the

price elasticity of demand for retail gasoline in California. Our estimation approach

applies a new set of instruments to the California context and differentiates between

outages based on the refinery unit level. We focus on coking, HCU and FCC units

since they produce naphtha, a significant blending component by volume of finished
7In an earlier version of the paper, using a shorter sample period, power and statistical signifi-

cance were indeed lower.
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gasoline. We also use outages in the alkylation and hydrotreating units. While these

units contribute less to the finished product when measured by volume, the chemical

properties of their output are essential to make CARB-compliant gasoline, making

their outage have an outsized effect. Due to the granularity of the outage data set

and the conditions in the California gasoline market, the proposed instruments have

a strong first stage. Similarly, due to the largely unpredictable nature of the outages,

these are conditionally uncorrelated with unobserved demand components.

We find that the one-month price elasticity is -0.2 and that the long-term elastic-

ity is -0.57. These estimates imply that California consumers are more price sensitive

than the average, perhaps because of a heightened awareness to the consistently high

prices in California. The magnitude is consistent with cross-sectional heterogeneity

documented by Kilian and Zhou (2024). Given the large interest in energy and envi-

ronmental policies in California, our estimates can inform optimal policy. Similarly,

knowing that consumers are quite price-sensitive could open the door to carbon tax

policies that are more palatable to elected officials (Parry et al., 2022).

For example, Holland et al. (2009) estimate the welfare costs of implementing

the Low Carbon Fuel Standard (LCFS) and simulate different scenarios based on

different supply and demand price elasticities values. Our estimates exceed the range

of values for which they simulate welfare outcomes, but based on their argument, the

conclusion follows that welfare costs of adjusting to the new standards would be lower

since consumers are more responsive to the implied subsidies of the LCFS.

Gasoline consumption touches on several aspects of our everyday lives, and know-

ing the price sensitivity of consumers is essential to the design of public policies and

informing business decisions. Our estimates show substantial consumer price sensitiv-

ity. Based on this evidence, policymakers, investors, and researchers may re-evaluate

the implications of consumers’ reaction to price changes.
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A Types of refining units

A.1 Middle-stage refining units

The coking, fluid catalytic cracking unit (FCC) and hydrocracking unit (HCU) are

part of the middle stages of the refining process. Units are shown in Figure 4 high-

lighted in orange. The main task of these units is to transform heavy and medium

hydrocarbons into lighter distillates by “cracking” them.8 These lighter distillates

have higher octane levels.

Coking unit: After crude oil passes through the CDU, some heavy residual fuels

remain. Coking units convert these heavy residuals into hydrocarbons with lower

boiling points that can be used as inputs to other units.

FCC unit: transforms heavy hydrocarbons into lighter products like gasoline and

naphtha by applying heat and catalysts.

HCU unit: transforms blends with high sulfur content into naphthas and gasoline

by using high pressure, hydrogen, and catalysts.

The output of the FCC and HCU units contribute approximately 40% of the

volume of the finished gasoline blend (Pugliaresi and Pyziur (2015)). Therefore, an

outage in these units constrains overall output by volume.

A.2 Sulfur-reducing refining units

One thing that makes California’s gasoline market unique is its environmental reg-

ulations. Specifically, California Air Resources Board (CARB) mandates specifica-

tions that reduce the pollution from gasoline consumption compared to conventional

gasoline. These specifications are reached largely thanks to the alkylation and hy-

drotreating units.

Finished gasoline is a blend of petroleum distillates and ethanol. According to Lar-
8Cracking is the process where heavy hydrocarbon molecules are broken up into lighter molecules,

usually with higher octane levels.
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son (2018), most geographies in the US use a blend known as Conventional Blendstock

for Oxygenate Blending (CBOB), while some highly populated areas along the North-

east coast of the U.S. use a blend with more stringent environmental requirements

known as Reformulated Blendstock for Oxygenate Blending (RBOB).

However, in California, a different blend known as California Reformulated Gaso-

line Blendstock for Oxygenate Blending (CARBOB) is mandated. Compared to

RBOB, this blend has even lower volatility or tendency to vaporize, as measured

by Reid Vapor Pressure (RVP); it also has lower levels of toxic pollutants like sulfur

and benzene than conventional blends.

Table 5: Specifications for different types of gasoline
Gasoline parameter CBOB RBOB CARBOB

(1) (2) (3) Units
Benzene content . 1.3 1.22 % of volume
Reid Vapor Pressure 7.9 7 5.99 psi
Sulfur content 80 80 21 ppm
Source: California Air Resources Board (2014) and TransportPolicy.net (2017).

To achieve CARB’s standards, California refiners need to include components into

the blend that will accomplish two opposing objectives: reaching the desired octane

level and reach the desired environmental regulations. There are two refining units

that are instrumental in reaching these dual objectives: the alkylation unit and the

hydrotreating units.

While the volume of output from these units is low compared to the FCC, HCU,

and coking units, these units are essential to meeting environmental regulations.

Therefore, their outages strongly affect the ability to produce CARB-compliant gaso-

line. Figure 4 shows a flow chart of the refinery process and highlights in red where

the alkylation and hydrotreating units participate in creating the gasoline blend.

Alkylation units produce alkylates, a distillate with low RVP, low sulfur, and high

octane levels (Peterson (1996)). However, there are two downsides to alkylation units:

the first is that they have high fixed costs; the second one is that one of the main
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inputs into the unit is isobutane.

Isobutane is a chemical produced during one of the refining stages and has limited

availability. Isobutane is also a main input to another process called polymerization,

which produces a high-octane distillate, yet this distillate is more polluting than the

alkylates. Installing a polimerization unit is substantially cheaper than an alkylation

unit and yields a high-octane product, making it more attractive for refiners (Gary

et al. (2007a)). Therefore, alkylation units tend to be used only in regions with very

strict RVP requirements, such as California (Peterson (1996)).

Hydrotreating units are the second set of units that help refiners achieve CARB’s

standards. The main objective of these units is to reduce a product’s sulfur content.

These units are common throughout the U.S. and not only in California, as opposed

to alkylation units. However, California refineries tend to rely more on hydrotreating

units than their counterparts in the contiguous US (California Energy Commission

(2020b)). Therefore, an outage in these units noticeably affects the ability of refiners

to meet CARB’s standards.

26

Electronic copy available at: https://ssrn.com/abstract=4629611



F
ig

ur
e

4:
R

efi
ne

ry
flo

wc
ha

rt
fro

m
G

ar
y

et
al

.(
20

07
d)

.

27

Electronic copy available at: https://ssrn.com/abstract=4629611


	Introduction
	Previous gasoline elasticity estimation approaches
	Instruments based on the crude oil market
	Other appaoches to address endogeneity

	Using refinery outages as exogenous price shocks
	Data and summary statistics
	Characteristics of outages
	Different types of outages
	Statistical Diagnostics for IV

	Model and results
	Discussion and conclusion
	Types of refining units
	Middle-stage refining units
	Sulfur-reducing refining units


